Patient-derived xenograft (PDX) tumors will allow for accurate analysis of drug response and preserve molecular signaling of parent tumors. Glioblastoma multiforme (GBM), the most common primary brain malignancy, is used to test our hypothesis. MicroTumors were evaluated by comparing kinetic mass spectrometry profiles of GBM-MicroTumors with corresponding parent orthotopically implanted PDX, and determining single and combination treatment effects of small molecules/inhibitors (SMI) on GBM MicroTumors.

INTRODUCTION

MATERIALS AND METHODS

RESULTS

CONCLUSIONS

ACKNOWLEDGEMENTS

This research was funded by 1R21CA185712. GBM PDX cells are maintained within the UAB Brain Tumor Animal Model Facility.

REFERENCES

Thottassery, G. Yancey Gillespie, and Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL and Vivo Bioscience, Inc. Birmingham, AL.

DRUG SENSITIVITY TESTING

Patient-Derived MicroTumor Assay

KINOMICS

PROFILING DRUG SENSITIVITY AND KINOMIC PATHWAYS UTILIZING A NOVEL HUMAN TUMOR DERIVED MICROTUMOR ASSAY

Figure 1. At present, drug screening studies are commonly performed using monolayer or spherical culture and xenograft models of tumor cell lines. However, these do not fully recapitulate the primary tumor’s microenvironment and fail to accurately predict clinical outcomes. Vivo Biosciences has developed a novel MicroTumor 3D matrix based assay system that offers a closer in vivo representation of tumor cells in their native microenvironment. Patient-derived xenograft (PDX) tumors will allow for accurate analysis of drug response and preserve molecular signaling of parent tumors. Glioblastoma multiforme (GBM), the most common primary brain malignancy, is used to test our hypothesis. MicroTumors were evaluated by comparing kinetic mass spectrometry profiles of GBM-MicroTumors with corresponding parent orthotopically implanted PDX, and determining single and combination treatment effects of small molecules/inhibitors (SMI) on GBM MicroTumors.